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Purpose: The aim of this study was to propose and validate an intuitive method for training and to

validate knowledge-based planning (KBP) systems based on a patient-specific plan quality scoring.

Methods: A sample of 80 clinical plans of prostate cancer patients were ranked on the basis of the

Adjusted Plan Quality Metric (APQM%). This quality metric was computed normalizing the Plan

Quality Metric (PQM%) score to the best possible OAR sparing estimated by the Feasibility DVH

(FDVH) algorithm. Two different plan libraries were created, purging all the plans below the first

quartile or below the median the APQM% distribution. These libraries were used to populate and

train two RapidPlan models: respectively, the APMQ25% and the APMQ50% models. No further

refinements or actions were undertaken on these two models. Their performances were benchmarked

against another two RapidPlan models. An Uncleaned model, which was populated and trained with

the initial sample of 80 plans, and a Cleaned model, obtained through the standard iterative cleaning

and refinement process suggested by the vendor and in literature. The outcomes of a planning test

based on 20 patients within the training library (closed loop) and 20 patients outside of the training

library (open-loop) were compared through various DVH metrics and the PQM% score.

Results: The selection through APQM% thresholding roughly preserves the geometric variety of the

Cleaned model; only the APMQ50% model showed a modest broadness reduction. The models gener-

ated through APQM% thresholding showed target coverage and OARs sparing equal or superior to

the Uncleaned and Cleaned models both for the closed- and the open-loop tests. No significant dif-

ferences were found between the four models. PQM% analysis ranked the overall plan quality as:

86.5 � 6.5% APQM50%, 83.1 � 5.9% APQM25%, 80.39 � 10.6% Cleaned and 79.4 � 8.5%

Uncleaned in the closed-loop test; 84.9 � 7.6% APQM50%, 82.6 � 7.9% APQM25%,

80.39 � 10.6% Cleaned and 79.4 � 8.5% Uncleaned in the open-loop test.

Conclusions: Forward feeding a RapidPlan model through a thresholding selection based on

APQM% is proven to produce equal or better results than a model based on a manually and itera-

tively refined population. A tighter APQM% threshold turns approximately into a higher average

quality of plans generated with RapidPlan. A trade-off must be found between the mean quality of

the KBP library and its numerosity. The proposed KBP feeding method helps the KBP user, because

it makes the model refinement more intuitive and less time consuming. © 2018 American Association

of Physicists in Medicine [https://doi.org/10.1002/mp.12896]
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1. INTRODUCTION

The interest in automated or knowledge-based solutions to

radiation treatment planning is rapidly growing because of

their capability to improve both the plan consistency and the

planning efficiency. RapidPlan, the commercial knowledge-

based planning (KBP) solution by Varian Medical Systems

(Palo Alto, CA), uses regression analysis to build a model

which correlates the geometric relationships between OARs

and PTV with the dose-volume histogram of a library of clin-

ical plans.1 For each new patient, the model predicts a range

of achievable OAR dose-volume histograms and a set of

dose-volume objectives that are used to drive the inverse

planning process. The effectiveness of the proposed opti-

mization objectives is only as good as the quality of the train-

ing set.1 Therefore, a carefully selected group of consistent

high quality treatment plans is recommended to feed

RapidPlan, together with a labor intensive validation pro-

cess.2–4 Indeed, RapidPlan model has to be reviewed, refined

and validated through a complex and iterative process that

requires great effort by the user.2–5 Despite the promising

results reported for RapidPlan,2–4,6 its implementation may

turn out to be time consuming.

This hurdle has already been tackled by Li et al. who pro-

posed a compelling solution based on script-driven auto-

mated planning.7 However, small centers can hardly rely on

such an approach, so a solution based on an easier and more

accessible tool would be beneficial to any KBP user.

In 2012, Nelms et al. introduced the “Plan Quality Metric”

(PQM) scoring which, through a list of metrics with specific

weightings or scores, enables plans to be given an overall

quality score for ease of comparison and validation.8 More

recently, Ahmed et al. proposed a tool to estimate a priori the

possible OAR sparing: termed as Feasibility DVH (FDVH).9
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The FDVH measures the difficulty of achieving some DVH

objectives considering the patient-specific anatomical chal-

lenges and ensuring the complete target coverage to full dose.

PlanIQ (Sun Nuclear Corp., Melbourne, FL) implements

both of these tools and combines them in a new metric called

Adjusted PQM (APQM). It is a plan quality score customized

to the patient-specific feasibility analysis and is therefore con-

sistent across all patients. This property makes APQM scor-

ing a complementary tool for the evaluation and refinement

of RapidPlan models.9,10 In fact, unlike PQM, APQM allows

to adequately evaluate large OARs-PTV overlap or particu-

larly unfavorable OARS geometry and consequently tailor the

judgment of quality. Such a possibility levels out the individ-

ual planning hurdles and serves as a patient-specific bench-

mark to meaningfully compare the quality of hundreds of

plans.

This study analyzes APQM as a tool to expedite and

facilitate the configuration and refinement of a RapidPlan

model. APQM patient-specific quality score was used to

select plans to build a RapidPlan model in a feed-forward

process without any further refinement. VMAT plans for

prostate cancer were considered. The performance of the

obtained model was benchmarked against the performance

of a RapidPlan model populated, refined and validated

according to the standard iterative methodology proposed

in literature.

2. MATERIALS AND METHODS

2.A. Patient sample

One hundred patients treated for radical prostate cancer,

between 2015 and 2016, were collected from the database

of our Institute. They were all manually planned and trea-

ted with Volumetric Modulated Arc Therapy using 1 or 2

full arcs and 6-MV photons. All of the treatments were

planned with Eclipse and progressive resolution optimizer

(PRO) v. 11 to deliver 78 Gy or 70 Gy (PTV T) over 39

or 28 fractions. The planning goals were to deliver 95%

of the prescribed dose to 100% of the PTV, limiting the

overdosage to 110% of the prescribed dose. All plans were

optimized with the sparing of rectum, bladder, and

femoral heads according to our department prostate radical

treatment protocol, which is based upon RTOG 0126.

Table I reports a descriptive statistic of the dosimetric

results of the population. Eighty of these patients were

used for model building and closed-loop validation, while

the remaining twenty patients were used only for the

open-loop validation phase. Closed-loop validation, that is,

replanning with RapidPlan treatments that were planned

manually and were included in the training library, proves

the self-consistency of the model. Open-loop validation,

that is, replanning with RapidPlan treatments that were

planned manually but were not included in the training

library, allows to test the capability and the efficacy of the

model to predict the planning outcome of patients

unknown to the model itself.

2.B. Plan quality scoring

The “Plan Quality Metric” (PQM) scoring, introduced by

Nelms et al.,8 is a user-defined metric intended to quantify

and compare the quality of treatment plans by mimicking the

judgment of a clinical team. PQM% quantifies the overall

quality achieved by a treatment plan in terms of adherence to

a list of planning objectives/endpoints. Indeed, it is built with

a collection of sub-components which represents a set of

clear and specific treatment plan objectives set by clinicians

(DVH points, conformity indices, etc.). Each sub-component

is associated with a function that should mathematically

describe the clinician judgment criterion. This function trans-

lates the achieved value of each submetric into a numerical

score. The sum over of submetric scores divided by the total

maximum achievable constitutes the composite PQM%. A

detailed description of metrics and score functions is given in

table I and in fig. 2 in Ref. [8].

The “Feasibility DVH” (FDVH) tool uses the CT images

and DICOM RT structure set of the patient to generate a ficti-

tious dose distribution based on first principle assumptions

and a series of energy-specific dose-spread calculations.9,10

This 3D dose distribution is ideal and is built intentionally

unachievable, such that each PTV is evenly painted with the

prescription dose (the DVH of each PTV will therefore be a

perfect corner). A high dose gradient and moderate dose

periphery is then added to the PTV dose cloud. Once the

dose cloud is generated, for each individually considered

OAR the lower possible boundary of its DVH is predicted.9,10

A detailed explanation of the algorithm can be found in Ref.

[9].

The commercial PlanIQ software v2.1 implements both

the PQM formalism and FDVH estimation algorithm and

integrates them into the so-called Adjusted Plan Quality Met-

ric (APQM). Once the FDVH is used to estimate the feasibil-

ity of attaining each treatment plan objective, the APQM% is

obtained by normalizing the result of each PQM% submetric

to the ideal 3D dose distribution corresponding result. This

process takes into consideration the unique challenges of

specific patient anatomy when comparing plan quality.10 To

summarize, PQM% measures the clinical acceptability of a

treatment plan on the basis of population-based approved

standards, while APQM% measures how close a treatment

plan is to the best possible achievable result for a particular

patient. Moreover, the use of APQM% score can help the

planner to understand whether low absolute plan quality met-

ric scores (PQM%) are due, at least in part, to the specific

anatomy challenges that cannot be fulfilled, while ensuring

target coverage.

In this study, APQM% was used to rank and identify the

best possible plan candidates to feed the KBP algorithm,

while PQM% was used to compare different plans for the

same patient.

The PQM algorithm as introduced in Ref. [8] was herein

adopted since its definition closely matches the clinical end-

points used in our clinic, with the only exception of a unique

PTV.
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2.C. Model building and refinement

The APQM% score was computed for each single plan of

the entire sample. Afterwards, the eighty plans selected for

the model building phase were ranked from the lowest to the

highest APQM% value. Two RapidPlan models were popu-

lated purging, respectively, all the plans falling below the first

quartile (APQM25%) and the median (APQM50%) of the

APQM% distribution. Once populated, the two models were

trained without any further refinement and actions, so that

model generation consisted in a pure feed-forward process.

The choice of the two threshold guarantees, at least, the mini-

mally acceptable number of plans for model building, as sug-

gested in the literature and in the RapidPlan user guide.1,11,12

The same eighty plans were used to populate and train

two models to be used as benchmark. The population and

first training process led to an initial RapidPlan model,

referred herein as Uncleaned. According to literature and

vendor recommendations, this model was subsequently

refined and cleaned through an iterative process: influential

data points were individually examined and judged, geomet-

ric outliers were removed, while dosimetric outliers were

replanned only in case the model predictions were largely

better than clinical plans.1,13,14 The outliers’ classification

was based on the statistical metrics given by RapidPlan at the

end of the model training phase.1,2 This procedure led to the

Cleaned model.

All the four RapidPlan models were configured to gen-

erate the list of optimization objectives given in Table II.

This list closely match the optimization protocol used in

the clinical practice with which the plans of the entire

sample were firstly manually optimized. It is worth noting

that no this set of objectives did not underwent any refine-

ment procedure as suggested in literature.4 Such a refine-

ment was out of the scope of this work that focus on the

selection and refinement of the population of plans

composing the model’s library.

2.D. Model validation and comparison

Model validation and comparison were performed by

means of closed-loop and open-loop tests.2,3,12 The closed-

loop test was performed on 20 patients chosen randomly

between those common to all the four training groups, while

the open-loop test was conducted on the 20 patients left for

model validation phase and not included in any of the model

libraries. Table III shows the samples of patients used for the

validation procedure and the population used to build the ini-

tial Uncleaned model in terms of absolute volume and

APQM% distributions. A two-sided t test was used to com-

pare the populations.

For each patient four different plans were obtained feeding

the Eclipse optimizer (PO v13.7) with the predicted Rapid-

Plan constraints generated by each model. To compare the

performance of the models without any bias, a single auto-

matic optimization process without human intervention was

performed; the intermediate and final dose calculations were

done with Acuros-XB v13.7 algorithm as explained in Ref.

[14].

It must be noted that this decision may have led to an unfa-

vorable comparison between clinical and RapidPlan-

generated plans. In fact, a certain amount of skilled manual

interventions is needed to achieve high quality results even

when RapidPlan-generated objectives drive the optimiza-

tion.3,4,6,13,15 Nevertheless, the need of an unbiased and

relative comparison between the performances of four Rapid-

Plan models justifies the methodology.

The dosimetric features of the four models were compared

on the basis of the following DVH metrics: (a) Dose to the

95% of the PTV volume (D95%), the near minimum dose

(D98%), the near maximum dose (D2%); (b) V40Gy, V65Gy,

V70Gy and Mean Dose for rectum and bladder; (c) the Mean

Dose and the D1cc of the femoral heads. The former met-

rics were complemented by the Homogeneity index

[(D2% � D98%)/DPRESC] and the Conformation Number

TABLE I. Dosimetric endpoints of prostate treatment plans. Number of plans meeting the endpoints, mean � 1 standard deviation and existence range across the

entire sample.

Objectives % cases below contstraint Mean � 1 SD [min;max]

PTV V100% >= 95% 73% 95.3 � 0.5% [93.9%;96.6%]

D99% > 95% 100% 98.5 � 0.7% [95.2%;99.3%]

D2% < 107% 95% 106.1 � 1.0% [102.6%;108.9%]

Bladder V40Gy <= 40% 73% 34.2 � 8.0% [6.2%;64.4%]

V65Gy <= 25% 98% 9.5 � 6.6% [0.8%;37.0%]

V75Gy <= 10 cc 63% 10.09 � 1.55 [0.17;10.28]

Rectum V40Gy <= 40% 75% 33.3 � 16.2% [9.6%;94.4%]

V65Gy <= 20% 95% 14.1 � 8.8% [2.2%;56.6%]

V75Gy <= 10 cc 69% 9.7 � 0.9 [0.0;51.8]

Femoral head L V30Gy <= 50% 95% 31.6 � 7.9% [6.9%;52.7%]

D1cc <= 45 Gy 100% 2.4 � 6.0% [0.0%;31.9%]

Femoral head R V30Gy <= 50% 98% 2.8 � 4.6% [0.0%;23.4%]

D1cc <= 45 Gy 100% 2.0 � 5.5% [0.0%;35.9%]
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CN ¼
TVRI

TV
�
TVRI

VRI

where TVRI indicates the target volume covered by the reference

isodose, TV indicates the target volume and VRI indicates the vol-

ume of the reference isodose.16 The overall comparison between

the four models was performed through the PQM% score com-

puted for each plan included into the closed- and open-loop tests.

2.5. Statistical analysis

Volume distributions and DVH metrics were compared

through a two-sided t test with a significance level of 0.05.

PQM% values were compared through a Wilcoxon signed

rank test, which compares medians of non-normal distribu-

tions, with a significance level of 0.05.

3. RESULTS

3.A. Model training statistics

The refinement and cleaning procedure of the Uncleaned

model led to the removal of 11 plans because they were classi-

fied as geometric outliers or influential data points. No

dosimetric outliers were identified. As a result, Cleaned model

was populated with 69 plans. The plan selections based on the

APQM% threshold led to 60 and 40 plans library for

APQM25% and APQM50% models. Table IV presents some of

the training quality metrics given in the RapidPlan system

report along with the volume distribution of the different sam-

ples. R2 represents the coefficient of determination of regres-

sion model parameters, v² is the average chi square of

regression model parameters and MSE is the mean squared

error between original and estimate values. R2 and v² measure

the goodness-of-fit of the OAR model. MSE describes how

well the model is able to estimate the original DVH in a train-

ing plan and the closer it is to 0 the better the estimation capa-

bility of the model for plans that are not part of the training set.

For the library of each model, a two-tailed t test compares if

the volume distributions of the considered structures were sig-

nificantly different from the library of the Uncleaned model. In

Fig. 1, the comparison of the overall plan quality of the trained

models is reported as a whisker box-plot of the APQM%.

3.B. Closed-loop validation

Table V depicts the results of the closed-loop validation

for the four trained models. In general, plans generated by

TABLE II. Summary of the optimization objectives generated by RapidPlan. The gen. indicates those values generated by RapidPlan on the basis of the trained

prostate model. Dpresc indicates the prescription dose.

ROI

Optimization objective

Objective type D (Gy) V (%) Weight

PTV Lower 0.99 Dpresc 100 130

Upper 1.02 Dpresc 0 120

Rectum Upper gen. 0, 10, 30, 50, 80 gen.

Bladder Upper gen. 0, 10, 30, 60 gen.

Femoral head L Upper gen. 0, 50 gen.

Femoral head R Lower gen. 0, 50 gen.

Body Normal tissue

objective

DistanceFrom

TargetBorder = 0.2 cm

100

StartDose = 100

EndDose = 50

FallOff = 0.2 cm�1

TABLE III. Distribution of structure volumes measured in cubic centimeters and APQM% score of clinical plans. Closed- and open-loop test samples are com-

pared to the Uncleaned model library population. Reported P-values refer to a two-sided t test.

Structures volume in cm3 and APQM% score

Uncleaned model Closed-loop test Open-loop test

Mean � 1 SD [min;max] Mean � 1 SD [min;max] P-value Mean � 1 SD [min;max] P-value

PTV 137.7 � 48.3 [56.0;352.6] 130.5 � 29.6 [98.4;192.8] 0.401 138.8 � 30.3 [102.0;195.1] 0.899

Rectum 52.1 � 23.8 [17.3;126.7] 54.8 � 27.6 [22.2;100.4] 0.689 53.0 � 14.4 [39.5;86.3] 0.830

Bladder 291.8 � 148.5 [56.9;624.6] 331.8 � 169.1 [124.9;624.6] 0.335 250.6 � 98.6 [124.5;411.5] 0.139

Femoral head L 179.9 � 39.8 [101.1;336.6] 175.4 � 21.0 [126.5;192.5] 0.488 174.6 � 33.4 [78.4;206.0] 0.544

Femoral head R 182.7 � 39.9 [126.3;334.8] 174.9 � 20.8 [132.9;204.2] 0.229 179.7 � 35.3 [76.2;213.8] 0.741

APQM% 84.9 � 8.5 [55.1;96.6] 88.2 � 5.8 [81.2;96.6] 0.098 89.2 � 5.8 [79.1;99.5] 0.034
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RapidPlan showed a more uniform and better covered PTV at

the expense of a lower sparing of OARs with respect to the

clinical plans. No difference can be noted in the target confor-

mality. While the differences in PTV coverage were statisti-

cally significant, the lower OARs sparing were only seldom

significant. Generally, ranking the models in terms of OAR

sparing, APQM50% was the closest to clinical plans while the

others were ranked as APQM25% > Cleaned > Uncleaned.

The larger differences were seen in the low dose region of

rectum (V40Gy). Fig. 2 confronts, in terms of PQM%, the

overall plan quality of the four trained models to the clinical

plans. PQM% values confirmed the results seen with DVH

metrics, even if no statistically significant differences were

found. A detailed representation of the planning outcome of

the closed-loop validation is reported in Fig. S1 in the sup-

plementary material.

3.C. Open-loop validation

Results of the open-loop validation for the four trained

models are reported in Table VI. The general observations

made for the closed-loop test remained valid for the open-

loop comparison. RapidPlan-generated plans showed a better

covered and more homogeneous PTV at the cost of generally

less spared OARs with reference to the clinical plans. In this

case, the APQM25% model showed also a better target confor-

mance than the clinical plans. In terms of OAR sparing,

APQM50% equaled the results obtained by APQM25% and

Cleaned model and outperformed the Uncleaned model. The

overall plan quality, compared in Fig. 3 by means of PQM%,

confirmed the ranking. A detailed representation of the plan-

ning outcome of the open-loop validation is reported in

Fig. S2 in the supplementary material.

It is worth noting that all the 20 patients selected to per-

form the open-loop test laid within the geometrical domain of

three of the four trained models. In fact, four patients fell out-

side the domain of the APQM50% model only: because of the

OAR in two cases (large rectum, small bladder) and because

of large PTV-OAR overlaps for the other two patients. When

this happened, RapidPlan sent a warning message and dis-

couraged the user to use its DVH predictions because they

might be not trustworthy. To allow an unbiased comparison,

TABLE IV. Summary of the model training statistics for each trained OAR and each trained model. Volume distribution descriptive statistics and comparisons are

also reported.

Structure Model R² v² MSE # structures # potential outliers

Volume (cc)

P-valueMean � 1sd [min;max]

PTV Uncleaned 80 137.7 � 48.3 [56.0;352.6]

Cleaned 69 132.1 � 39.1 [65.6;258.7] 0.443

APQM25% 60 128.3 � 35.9 [56.0;218.2] 0.211

APQM50% 40 124.2 � 32.7 [56.0;193.8] 0.113

Bladder Uncleaned 0.679 1.065 0.0015 80 6 291.8 � 148.5 [56.9;624.6]

Cleaned 0.540 1.055 0.0014 69 0 292.2 � 140.6 [90.6;624.6] 0.987

APQM25% 0.706 1.083 0.0011 60 4 301.6 � 152.2 [56.9;624.6] 0.704

APQM50% 0.744 1.133 0.0017 40 4 302.6 � 149.5 [56.9;624.6] 0.711

Rectum Uncleaned 0.273 1.028 0.0078 80 3 52.1 � 23.8 [17.3;126.7]

Cleaned 0.310 1.028 0.0088 69 0 51.5 � 22.0 [17.3;122.0] 0.862

APQM25% 0.365 1.087 0.0102 60 4 52.5 � 25.1 [17.3;126.7] 0.921

APQM50% 0.450 1.068 0.0090 40 1 52.9 � 24.4 [17.3;122.8] 0.868

Femoral head L Uncleaned 0.435 1.031 0.0079 80 3 179.9 � 39.8 [101.1;336.6]

Cleaned 0.392 1.048 0.0076 69 2 179.9 � 40.8 [101.1;336.6] 0.984

APQM25% 0.448 1.052 0.0095 60 1 177.4 � 38.7 [102.3;336.6] 0.719

APQM50% 0.415 1.103 0.0096 40 9 177.0 � 40.2 [102.3;336.6] 0.708

Femoral head R Uncleaned 0.397 1.056 0.0049 80 6 182.7 � 39.9 [126.3;334.8]

Cleaned 0.397 1.032 0.0053 69 2 182.4 � 39.3 [126.3;334.8] 0.961

APQM25% 0.388 1.083 0.0073 60 15 178.3 � 37.3 [126.3;334.8] 0.504

APQM50% 0.548 1.187 0.0141 40 11 176.9 � 38.9 [128.1;334.8] 0.451

FIG. 1. Comparison of the APQM% distribution for the four trained models.
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the overall quality comparison has been repeated removing

the four patients: the results are depicted as white boxes in

Fig. 3. As can be seen from the graphs, the four excluded

patients were characterized by the lowest PQM% values, and

purging them from the analysis shifted the PQM% distribu-

tion upwards for all the models.

4. DISCUSSION

The considerable commitment of human resources

required to implement a KBP model, can be troublesome in

resource-constrained departments.7 This work investigated

the effectiveness of the APQM score in facilitating and

increasing the efficiency of the KBP training process.8–10

The APQM% scoring was used to filter the training set prior

to the model training and the performance of the KBP models

was evaluated with the PQM% score.

Volume distributions, reported in Table IV, showed that

the selection based on APQM% substantially preserves the

extent of the geometrical domain of the model population.

Besides the removal of the patients with largest PTV, no sig-

nificant differences were noted comparing the Uncleaned and

Cleaned models to the APQM%-filtered ones. Nevertheless,

TABLE V. Closed-loop test. Comparison of DVH endpoint between the clinically approved plans and the RapidPlan-generated plans related to the four models.

Each value is reported as mean value �1 SD and is accompanied by the P-value of a paired t test against the clinical plans. Statistically significant comparisons

are marked by “*”.

Structure Metric Clinical Unclean Clean APQM25% APQM50%

PTV V95% (%) 99.2 � 0.3 99.6 � 0.2 99.5 � 0.2 99.5 � 0.2 99.5 � 0.2

0.002* 0.004* 0.005* 0.005*

D98% (%) 98.6 � 0.3 99.1 � 0.2 99.1 � 0.2 99.2 � 0.2 99.1 � 0.3

<0.001* 0.001* 0.002* 0.002*

D2% (%) 105.5 � 0.9 105.4 � 0.2 105.4 � 0.2 105.4 � 0.2 105.4 � 0.4

0.554 0.652 0.505 0.701

HI 6.9 � 1.0 6.2 � 0.3 6.3 � 0.3 6.3 � 0.5 6.4 � 0.7

0.029* 0.047* 0.068 0.116

CN 0.832 � 0.026 0.830 � 0.027 0.828 � 0.027 0.832 � 0.025 0.832 � 0.022

0.729 0.451 0.972 0.982

Rectum V40Gy (%) 26.0 � 8.8 28.1 � 10.4 27.9 � 10.0 26.9 � 10.0 24.9 � 9.4

0.397 0.431 0.695 0.641

V65Gy (%) 6.9 � 3.4 7.6 � 4.5 7.8 � 4.5 7.5 � 4.4 7.1 � 4.2

0.128 0.085 0.15 0.563

V75Gy (cc) 2.8 � 2.2 3.1 � 2.7 3.2 � 2.8 3.1 � 2.7 3.0 � 2.6

0.098 0.046* 0.076 0.252

Bladder V40Gy (%) 14.2 � 8.0 14.8 � 8.3 15.1 � 9.5 14.8 � 8.9 14.7 � 8.2

0.308 0.241 0.275 0.33

V65Gy (%) 5.9 � 3.5 5.9 � 3.6 6.0 � 3.8 5.9 � 3.6 6.0 � 3.6

0.412 0.238 0.76 0.307

V75Gy (cc) 12.3 � 4.6 12.4 � 4.4 12.3 � 4.3 12.3 � 4.5 12.4 � 4.4

0.822 0.992 0.947 0.885

Femoral head L D1cc (Gy) 23.75 � 7.28 22.28 � 4.81 21.66 � 5.56 22.36 � 4.34 21.09 � 3.93

0.475 0.322 0.594 0.305

Mean dose (Gy) 10.58 � 4.31 10.00 � 2.53 10.01 � 2.87 9.89 � 2.44 9.54 � 2.30

0.581 0.574 0.531 0.342

Femoral head R D1cc (Gy) 24.22 � 3.42 22.70 � 3.32 22.80 � 3.68 22.94 � 3.55 21.64 � 2.83

0.191 0.236 0.298 0.035*

Mean dose (Gy) 10.82 � 2.73 10.65 � 2.00 10.60 � 2.08 10.37 � 2.06 10.36 � 2.07

0.757 0.71 0.45 0.426

FIG. 2. Closed-loop test. Whiskers box plot of PQM%. The four models are

compared to the 20 clinical plans included in the model and considered for

the closed-loop test.
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the twofold reduction in sample numerosity of the APQM50%

model resulted in the fact that four out of twenty patients

selected for the open-loop test were outside of its geometrical

domain. This underlines the need of a proper balance

between the size of the sample and the choice of a strict con-

sistency and quality of plans. So, before the clinical imple-

mentation of each KBP model, a clear and precise decision

about its scope and its intended use is mandatory.

DVH analysis (Tables V and VI) showed that APQM%-

filtered models outperformed or equaled the results of the

Cleaned model both in terms of PTV coverage and OAR

sparing. Moreover, APQM50% model was the closest to the

quality of the clinical plans used as reference. These results

were confirmed by the analysis of the overall plan quality per-

formed through PQM% comparison (Figs. 2 and 3).

The lack of human intervention during plan optimization

may seem to generate low quality plans, it improved the PTV

TABLE VI. Open-loop test. Comparison of DVH endpoint between the clinically approved plans and the RapidPlan-generated plans related to the four models.

Each value is reported as mean value �1 SD and is accompanied by the P-value of a paired t test against the clinical plans. Statistically significant comparisons

are marked by “*”.

Structure Metric Clinical Unclean Clean APQM25% APQM50%

PTV V95% (%) 99.2 � 0.4 99.8 � 0.3 99.7 � 0.3 99.8 � 0.3 99.8 � 0.3

<0.001* 0.001* 0.001* <0.001*

D98% (%) 98.6 � 0.3 99.3 � � 0.2 99.2 � 0.3 99.3 � 0.3 99.3 � 0.3

<0.001* 0.001* <0.001* <0.001*

D2% (%) 105.5 � 0.7 104.7 � 0.8 104.9 � 0.8 104.8 � 0.8 104.8 � 0.5

0.023* 0.022* 0.031* 0.027*

HI 6.9 � 0.9 5.4 � 0.7 5.7 � 1.1 5.5 � 0.8 5.4 � 0.8

0.004* 0.004* 0.005* 0.004*

CN 0.856 � 0.028 0.847 � 0.026 0.830 � 0.032 0.867 � 0.025 0.843 � 0.038

0.185 0.258 0.010* 0.239

Rectum V40Gy (%) 26.0 � 12.6 33.2 � 8.2 31.4 � 11.2 30.3 � 5.8 28.8 � 7.1

0.09 0.151 0.242 0.462

V65Gy (%) 6.9 � 5.0 9.2 � 4.8 8.3 � 5.5 8.4 � 4.4 8.1 � 4.5

0.044* 0.159 0.142 0.253

V75Gy (cc) 2.8 � 2.4 3.5 � 2.3 3.3 � 2.4 3.3 � 2.2 3.2 � 2.2

0.005* 0.024* 0.017* 0.053

Bladder V40Gy (%) 14.9 � 18.2 16.8 � 18.1 17.1 � 19.7 17.0 � 20.0 16.9 � 18.6

0.011* 0.023* 0.085 0.033*

V65Gy (%) 5.6 � 9.9 5.9 � 9.4 6.0 � 10.1 6.1 � 10.1 6.0 � 9.8

0.423 0.159 0.189 0.275

V75Gy (cc) 12.0 � 9.0 12.9 � 9.0 12.9 � 9.3 13.1 � 9.4 13.0 � 9.2

0.007* 0.008* 0.007* 0.003*

Femoral head L D1cc (Gy) 23.60 � 4.61 23.77 � 4.43 21.86 � 4.60 21.46 � 2.29 19.52 � 3.41

0.916 0.226 0.269 0.115

Mean dose (Gy) 10.51 � 2.87 10.98 � 1.69 10.09 � 2.19 10.28 � 1.44 9.64 � 1.46

0.494 0.458 0.757 0.325

Femoral head R D1cc (Gy) 24.09 � 6.74 19.68 � 3.24 19.55 � 3.99 19.47 � 2.94 18.75 � 4.20

0.024* 0.025* 0.086 0.009*

Mean dose (Gy) 10.75 � 4.03 10.22 � 1.89 9.64 � 2.12 9.61 � 1.81 9.68 � 2.25

0.61 0.233 0.36 0.335

FIG. 3. Open-loop test. Whiskers box plot of PQM%. The four models are

compared to the clinical plans selected for the open-loop test. Gray boxes are

related to 20 patients while white boxes are related to 16 patients. Statistically

significant comparisons are highlighted.
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coverage and homogeneity at the cost of lower OAR spar-

ing. In fact, the relative weight of planning objectives, auto-

matically generated by RapidPlan and left unchanged during

the whole optimization procedure, favored the PTV over

OARs.

APQM% scoring represents an intuitive and clinical

oriented way to judge the overall plan quality with a patient-

specific approach, and, as we showed herein, it may be

extremely useful during the validation and refinement of

KBP models. First of all, introducing a plan selection method

based on APQM% ranking helps the user choose the best

candidates to feed RapidPlan, improving the consistency of

the model library. Moreover, we illustrated that a narrower

APQM% threshold results in better planning outcomes. Con-

sidering a relative comparison between the planning outcome

of the four RapidPlan models here described, the better plan-

ning outcomes might be due the fact that a KBP model can

produce outcomes only as good as the mean quality of its

training set.1,17 In both closed- and open-loop tests, the differ-

ences in mean plan quality between the training sets of the

four trained models were qualitatively transferred to the dif-

ferences in mean plan quality of their outcomes. To summa-

rize, the APQM% selection performed prior to KBP feeding

can speed-up the model building, because low quality plans

are easily identified during the refinement phase, and higher

quality outcomes emerge because APQM% intrinsically

increases the quality of the KBP library. Interestingly, this

also means that APQM% represents a self-consistent measure

of the overall plan quality. Whatever way a model is refined

and generated, measuring the quality of its training library

with APQM% allows the prediction of the quality of its out-

come in terms of PQM% or APQM%.

Within this study, no further refinements were undertaken

after the APQM% thresholding, so the lengthy and iterative

process of model refinement was reduced to a feed-forward

process. Even if this work proved the efficacy of APQM% as

plan selection method prior to KBP feeding, this does not

diminish the need for a systematic validation of a KBP model

prior to its clinical employment and does not allow users to

approach KBP solutions in a hasty and simplistic way.

It should be noticed that the general better target coverage

and the lower OAR sparing showed by RapidPlan could be

due to a possible suboptimal choice of the optimization

objectives in the model. This set of objectives could have

been refined as indicated in literature to obtain a better com-

parison with clinical plans.4 This task was outside the scope

of the present work but, in principle, the optimization objec-

tives refinement could be undertaken as a following steps fol-

lowing a procedure similar to the presented one and based on

APQM% scoring.

The validity of this study is limited by the single and

relatively simple treatment site considered. A further limi-

tation of this study is represented by the threshold chosen

to build the APQM%-based model. A merely ordinal

selection was performed: this was intended to demonstrate

that a higher threshold implies better results, potentially

at the price of reducing the applicability of the model.

The authors did not propose a method to select a speci-

fic threshold based on APQM% scoring, because it may

depend on the APQM% algorithm definition and it

should be tailored to the numerosity of the available plan

sample. The APQM% models did not undergo any pro-

cess devoted to outlier detection or removal, and the

presence of outliers did not lessen the validity of the pre-

sented results. Indeed, the presence of outliers did not

prevent the APQM% models from obtaining the best

results among the considered models. The usefulness of

the iterative cleaning of outliers, that would have nar-

rowed the training sets, has already been debated because

it does not ensure a substantial quality increase.4,12

It should be emphasized that the entire study is based on

the choice of a particular PQM algorithm, which is highly

subjective and might not be universally valid. The PQM has

nonetheless the advantage of being customized to the single

center protocol and habits. This translates into two valuable

advantages. First, once the PQM algorithm is defined in

accordance with the medical staff and tailored to the center’s

clinical endpoints, it serves as a quality assurance tool. Fur-

thermore, the availability of a common PQM algorithm

allows comparison of KBP models shared between centers or

conversely, might help different centers to build a shared

KBP model once they agree on the clinical endpoints to be

adopted.

5. CONCLUSION

Selecting the plan to be fed to a KBP system on the

basis of an overall patient-specific metric of quality is

shown to improve or at least equal the quality of KBP

model. The use of PQM algorithm complemented by the

FDVH estimate allows an intuitive and self-consistent mea-

sure of plan quality, which can simplify and reduce the

workload related to KBP model training and validation.

The proposed methodology is general and can transform a

lengthy iterative process into a forward feeding process

based on a customizable tool. More work is needed to test

the validity of the proposed method to more complex treat-

ments, techniques and sites.
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Figure S1: Closed-loop validation. On the left the DVH

curves averaged over the 20 patients is plotted for the clinical

sample and every model. On the right the difference between

the clinical mean DVH and the mean DVH of each model is

reported. (a) PTV, (b) Bladder, (c) Rectum, (d) Left Femoral

Head, and (e) Right Femoral Head.

Figure S2: Open-loop validation. On the left the DVH curves

averaged over the 20 patients is plotted for the clinical sample

and every model. On the right the difference between the

clinical mean DVH and the mean DVH of each model is

reported. (a) PTV, (b) Bladder, (c) Rectum, (d) Left Femoral

Head, and (e) Right Femoral Head.
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